Power Cycles and Power Cycle Components/Processes Analysis
The ideal, simple and basic power cycles (Carnot Cycle, Brayton Cycle for both power and propulsion applications, Otto Cycle and Diesel Cycle) and ideal power cycle components/processes (compression, combustion and expansion) are presented in this course material. In the presented power cycles and power cycle components/process analysis, air is used as the working fluid.
For each power cycle thermal efficiency derivation is presented with a simple mathematical approach. Also, for each power cycle, a T - s diagram and power cycle major performance trends (thermal efficiency, specific power output and power output) are plotted in a few figures as a function of compression ratio, turbine inlet temperature and/or final combustion temperature and working fluid mass flow rate. It should be noted that this course material does not deal with costs (capital, operational or maintenance).
For compression and expansion, the technical performance of mentioned power cycle components/processes is presented with a given relationship between pressure and temperature. While for combustion, the technical performance at stoichiometric conditions is presented knowing the specific enthalpy values for combustion reactants and products, given as a function of temperature. This course material provides the compression and expansion T - s diagrams and their major performance trends plotted in a few figures as a function of compression and expansion pressure ratio and working fluid mass flow rate. For each combustion case considered, combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, stoichiometric oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends.
In this course material, the student gets familiar with the ideal simple and basic power cycles and power cycle components/processes and their T - s and h - T diagrams, operation and major performance trends.
Keywords: Power Cycles, Compression, Combustion, Expansion, Carnot Cycle, Brayton, propulsion applications, Otto Cycle and Diesel Cycle
Linked Documents
Power Cycles and Power Cycle Components/Processes Analysis CE 3 Hour Quiz
Visited 11,870 times
$90.00
Related Courses
Power Cycles and Power Cycle Components/Processes Ideal vs Real Operation Analysis
Visited 3,138 times
$30.00
Power Cycles and Combustion Analysis Webinar
Visited 2,530 times
$20.00
Buy This Course
Price :
$20.00 ( Per License )
Visited: 2710 Times
Difficulty: Normal
# Licenses | Discounted Price |
1 | $20.00 |
10 | $19.00 |
25 | $18.50 |
50 | $18.00 |
100 | $17.00 |
100 | $17.00 |
100 | $17.00 |
Resold modules appear on your website. You earn syndication share from each purchase. Contact Coggno to learn more on how to embed your own Portable Webshop in your website.