Power Cycles and Power Cycle Components/Processes Ideal vs Real Operation Analysis
The simple and basic power cycles (Brayton Cycle, Otto Cycle and Diesel Cycle) and power cycle components/processes (compression, combustion and expansion) are presented in this course material.In the presented power cycles and power cycle components/process analysis, air is used as the working fluid.
For each power cycle, the thermal efficiency derivation is presented with a simple mathematical approach.Also, for each power cycle, a T - s diagram and cycle major performance trends (thermal efficiency, specific power output and power output) are plotted in a few figures as a function of compression ratio, turbine inlet temperature and/or final combustion temperature, working fluid mass flow rate and both isentropic compression and expansion efficiency.It should be noted that this course material does not deal with costs (capital, operational or maintenance).
For compression and expansion, the technical performance of mentioned power cycle components/processes for ideal and real operation is presented with a given relationship between pressure and temperature and compression and expansion efficiency.
Complete combustion at constant pressure with and without heat loss is presented. Six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values.
Reactants and combustion products specific enthalpy values change with an increase in the temperature and such specific enthalpy values are presented in a plot where one can notice the flame temperature definition. Physical properties of basic combustion reactants and products species are presented in a specific enthalpy vs temperature plot.
The combustion technical performance at stoichiometry => 1 conditions is presented knowing the specific enthalpy values for combustion reactants and products, given as a function of temperature.Combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends.
In this course material, the student gets familiar with the simple and basic power cycles and power cycle components/processes and their T - s and h - T diagrams, ideal vs real operation and major performance trends.
Keywords: Brayton, Otto, Diesel, Compression, Combustion and Expansion Ideal vs Real Operation
Linked Documents
Power Cycles and Power Cycle Components/Processes Ideal vs Real Operation Analysis CE 3 Hour Quiz
Visited 1,016 times
$90.00
Related Courses
Power Cycles and Combustion Analysis Webinar
Visited 2,527 times
$20.00
Advanced Brayton Cycle (Gas Turbine) for Power Application and Combustion Analysis
Visited 3,002 times
$25.00
Buy This Course
Price :
$30.00 ( Per License )
Visited: 3124 Times
Difficulty: Normal
# Licenses | Discounted Price |
1 | $30.00 |
10 | $28.50 |
25 | $27.75 |
50 | $27.00 |
100 | $25.50 |
100 | $25.50 |
100 | $25.50 |
Resold modules appear on your website. You earn syndication share from each purchase. Contact Coggno to learn more on how to embed your own Portable Webshop in your website.